M1.(a) (i) $2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Or multiples
(ii) to speed up the reaction

OR

(provide a) catalyst or catalyses the reaction or biological catalyst OR release / contain / provides an enzyme

Ignore "fermentation"
Ignore "to break down the glucose"
Not simply "enzyme" on its own
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Any correct representation for the two organic structures. Brackets not essential.
Not "sticks" for the structures in this case
(c) M1 $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

OR $\quad \mathrm{q}=150 \times 4.18 \times 8.0$
Award full marks for correct answer
In M1, do not penalise incorrect cases in the formula
M2 $=(\pm) 5016(\mathrm{~J}) \boldsymbol{O R} 5.016(\mathrm{~kJ}) \boldsymbol{O R} 5.02(\mathrm{~kJ})$
(also scores M1)
M3 This mark is for dividing correctly the number of kJ by the number of moles and arriving at a final answer in the range shown.
Using 0.00450 mol
therefore $\Delta \mathrm{H}=-1115\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
OR - 1114.6 to - $1120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Range (+)1114.6 to (+)1120 gains $\mathbf{2}$ marks
BUT - $\mathbf{1 1 1 0}$ gains $\mathbf{3}$ marks and +1110 gains $\mathbf{2}$ marks

AND - $\mathbf{1 1 0 0}$ gains $\mathbf{3}$ marks and $\mathbf{+ 1 1 0 0}$ gains $\mathbf{2}$ marks
Award full marks for correct answer
In M1, do not penalise incorrect cases in the formula
Penalise M3 ONLY if correct numerical answer but sign is incorrect; (+)1114.6 to (+)1120 gains 2 marks
Penalise M2 for arithmetic error and mark on If $\Delta T=281$; score $q=m$ c ΔT only If $c=4.81$ (leads to 5772) penalise M2 ONLY and mark on for M3 = - 1283
Ignore incorrect units in M2
If units are given in M3 they must be either $\mathrm{kJ} \mathrm{or} \mathrm{kJ} \mathrm{mol}^{-1}$ in this case
(d) M1 The enthalpy change / heat change at constant pressure when

1 mol of a compound / substance / element
M2 is burned / combusts / reacts completely in oxygen OR burned / combusted / reacted in excess oxygen

M3 with (all) reactants and products / (all) substances in standard / specified states

OR
(all) reactants and products /(all) substances in normal states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K

For M3
Ignore reference to 1 atmosphere
(e) M1
$\Sigma \mathrm{B}$ (reactants) $-\Sigma \mathrm{B}$ (products) $=\Delta H$ OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$ OR
$2 \mathrm{~B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}=\mathrm{O})+6 \mathrm{~B}(\mathrm{C}-\mathrm{H})+4 \mathrm{~B}(\mathrm{O}=\mathrm{O})(\mathrm{LHS})$
$-6 \mathrm{~B}(\mathrm{C}=\mathrm{O})-6 \mathrm{~B}(\mathrm{O}-\mathrm{H})(\mathrm{RHS})=\underline{\Delta H}$
M2 (also scores M1)
$2(348)+805+6(412)+4(496)$ [LHS $=5957]$
(696) (2472) (1984)
$-6(805)-6(463)[R H S=(-) 7608]=\Delta H$
(4830) (2778)

OR using only bonds broken and formed (5152-6803)
M3
$\Delta H=-1651\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Candidates may use a cycle and gain full marks.

Correct answer gains full marks
Credit 1 mark for (+) 1651 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication / addition error; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with $4 \mathrm{O}_{2}, 3 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores only M1
Allow a maximum of one mark if the only scoring point is LHS = 5957 (or 5152) OR RHS $=7608$ (or 6803)
Award 1 mark for + 1651

M2.(a) The enthalpy (change) to break 1 mol of $\mathrm{H}-\mathrm{O} /$ bonds

> Averaged over a range of compounds / molecules
> Penalise energy but mark on ignore states $C E=0$ for ionic bonds
(b) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\Delta H=(H-H)+\frac{1}{2}(\mathrm{O}=\mathrm{O})-2(\mathrm{H}-\mathrm{O}) /$ sum of (bonds broken) - sum of (bonds formed)
$=436+496 / 2-2 \times 464$
$=-244\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow 1 mark only for +244 and -488
Units not essential but penalise incorrect units
(c) (i) same reaction / same equation / same number / same reactants and same products / same number and type of bonds broken and formed Do not allow similar
(ii) There must be a slight difference between the actual bond enthalpy (in water) and mean bond enthalpies for the $\mathrm{O}-\mathrm{H}$ bond (in other molecules)

Allow bond enthalpy value for enthalpy of formation may not be under standard conditions.
Allow reference to bond energy rather than bond enthalpy
Do not allow heat loss or experimental error
Do not allow mean bond enthalpies are not accurate

M3. (a) $\quad \mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CF}_{4}(\mathrm{~g})$
State symbols essential
(b) Around carbon there are 4 bonding pairs of electrons (and no lone pairs)

Therefore, these repel equally and spread as far apart as possible
(c) $\Delta H=\Sigma \Delta_{i} H$ products $-\Sigma \Delta_{i} H$ reactants or a correct cycle

$$
\text { Hence }=(2 \times-680)+(6 \times-269)-(x)=-2889
$$

$$
x=2889-1360-1614=-85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

Score 1 mark only for $+85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(d) Bonds broken $=4(\mathrm{C}-\mathrm{H})+4(\mathrm{~F}-\mathrm{F})=4 \times 412+4 \times \mathrm{F}-\mathrm{F}$

Bonds formed $=4(\mathrm{C}-\mathrm{F})+4(\mathrm{H}-\mathrm{F})=4 \times 484+4 \times 562$
Both required

$$
\begin{aligned}
& -1904=[4 \times 412+4(\mathrm{~F}-\mathrm{F})]-[4 \times 484+4 \times 562] \\
& 4(\mathrm{~F}-\mathrm{F})=-1904-4 \times 412+[4 \times 484+4 \times 562]=632
\end{aligned}
$$

$$
\mathrm{F}-\mathrm{F}=632 / 4=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

The student is correct because the F-F bond energy is much less than the $\mathrm{C}-\mathrm{H}$ or other covalent bonds, therefore the F-F bond is weak / easily broken Relevant comment comparing to other bonds (Low activation energy needed to break the F-F bond)

M4. (a) Bonds broken $=2(\mathrm{C}=\mathrm{O})+3(\mathrm{H}-\mathrm{H})=2 \times 743+3 \times \mathrm{H}-\mathrm{H}$
Bonds formed $=3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+3(\mathrm{O}-\mathrm{H})=3 \times 412+360+3 \times 463$
Both required
$-49=[2 \times 743+3 \times(\mathrm{H}-\mathrm{H})]-[3 \times 412+360+3 \times 463]$
$3(\mathrm{H}-\mathrm{H})=-49-2 \times 743+[3 \times 412+360+3 \times 463]=1450$
Both required
$\mathrm{H}-\mathrm{H}=483\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow 483.3(3)
(b) Mean bond enthalpies are not the same as the actual bond enthalpies in CO_{2} (and / or methanol and / or water)
(c) The carbon dioxide (produced on burning methanol) is used up in this reaction
(d) 4 mol of gas form 2 mol

At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure
(e) Impurities (or sulfur compounds) block the active sites Allow catalyst poisoned
(f) Stage 1: moles of components in the equilibrium mixture Extended response question

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Initial moles
$1.0 \quad 3.0$
0
0

| Eqm | $(1-0.86)$ | $\stackrel{(3-3 \times 0.86}{ }$ | |
| :--- | :---: | :--- | :--- | :--- |
| moles | $=0.86$ | 0.86 | |
| | $=0.42$ | | |

Stage 2: Partial pressure calculations
Total moles of gas $=2.28$
Partial pressures $=$ mol fraction $\times \mathrm{p}_{\text {total }}$
$\mathrm{p}_{\mathrm{co} 2}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {total }}=0.14 \times 500 / 2.28=30.7 \mathrm{kPa}$
$\mathrm{p}_{\mathrm{H} 2}=$ mol fraction $\times \mathrm{p}_{\text {total }}=0.42 \times 500 / 2.28=92.1 \mathrm{kPa}$
M3 is for partial pressures of both reactants
Alternative M3 =
$p p_{\text {co } 2}=0.0614 \times 500$
$p p_{\text {н } 2}=0.1842 \times 500$
$\mathrm{p}_{\text {снзон }}=$ mol fraction $\times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
$\mathrm{p}_{\text {H2O }}=$ mol fraction $\times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
M4 is for partial pressures of both products
Alternative M4 =
$p р_{\text {сноон }}=0.3772 \times 500$
$p p_{\text {нго }}=0.3772 \times 500$

Page 8

> Stage 3: Equilibrium constant calculation
> $K_{\mathrm{p}}=\mathrm{p}_{\text {сннон }} \times \mathrm{p}_{\mathrm{H} 2 \mathrm{O}} / \mathrm{p}_{\mathrm{CO} 2} \times\left(\mathrm{p}_{\mathrm{H} 2}\right)^{3}$

Hence $K_{p}=188.6 \times 188.6 / 30.7 \times(92.1)^{3}=1.483 \times 10^{-3}=1.5 \times 10^{-3}$
Answer must be to 2 significant figures

Units $=\underline{k P a}^{-2}$

